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a b s t r a c t

A low-complexity ESPRIT algorithm for direction-of-arrival (DOA) estimation is devised in
this work. Unlike the conventional subspace based methods, the proposed scheme only
needs to calculate two sub-matrices of the sample covariance matrix, that is, R11∈CK�K

and R21∈CðM−KÞ�K , avoiding its complete computation. Here,M is the number of sensors of
the array, K satisfies P≤K≤minðM;NÞ with P being the number of source signals and N
being the number of snapshots. Meanwhile, a Nyström-based approach is utilized to
correctly compute the signal subspace which only requires OðMK2Þ flops. Thus, the
proposed method has the advantage of computational attractiveness, particularly when
K⪡M. Furthermore, we derive the asymptotic variances of the estimated DOAs. Numerical
results are included to demonstrate the effectiveness of the developed DOA estimator.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Subspace-based methods for direction-of-arrival (DOA)
estimation, such as MUSIC [1] and ESPRIT [2], are a
compromise between accuracy and complexity. However,
for a large array and/or large samples, they are also
computationally intensive as they involve the calculation
of sample covariance matrix (SCM) and its eigenvalue
decomposition (EVD) to find the signal or noise subspace.

To reduce the computational cost in the conventional
subspace-based algorithms, various alternatives have been
proposed in the literature. Marcos et al. [3] have proposed to
find the noise subspace by using propagator method (PM)
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Huang),
without any eigendecomposition, and then employed the
MUSIC method for DOA estimation. However, it essentially
relies on the SCM which turns out to be computationally
demanding, especially when the numbers of array elements
and snapshots are large. Xin et al. [4] have suggested a low-
complexity subspace-based method which divides a full
uniform linear array (ULA) into overlapping forward and
backward subarrays and obtained the noise subspace
through a linear operation of the combined Hankel covar-
iance matrix. However, these schemes usually provide a poor
estimation performance when the number of snapshots is
less than the number of sensors.

In this paper, a low-complexity method is devised for
DOA estimation. Unlike the conventional DOA estimators,
the proposed method only needs to calculate two sub-
matrices of the SCM. In particular, we employ an approach
that is based on the Nyström method to correctly find the
signal subspace, avoiding the direct computation of SCM
and its EVD. The Nyström method has been widely used in
speeding up algorithms [5,6]. It is first exploited by
Williams and Seeger [7] for sparsifying kernel matrices
through approximating their entries. Recently, it has been
developed for spectral methods such as grouping problem
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Fig. 1. Subarrays in a ULA. The subarray separation is ðM−mÞd.
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[8] and normalized cut [9]. By using the Nyström method,
we are able to derive a new ESPRIT algorithm which
provides the comparable estimation performance with
the classical ESPRIT method but requires much less com-
putational cost than the latter, particularly in the large
array scenario. It is worth mentioning that we have
recently developed its preliminary version in [10] but the
expression of the signal subspace component is tedious
and it lacks theoretical analysis. Here we also analyze the
asymptotic performance of the proposed ESPRIT method
in terms of mean square error (MSE). The simulation
results are in line with the theoretical analysis.

2. Problem formulation

Consider a ULA with M isotropic sensors. There are
P ðPoMÞ uncorrelated narrowband source signals imping-
ing on the array from directions fθ1;…; θPg in the far field.
The M � 1 array observation vector is modeled as

xðtÞ ¼ AsðtÞ þ nðtÞ; t ¼ 1;…;N: ð1Þ
Here, A¼ ½aðθ1Þ;…; aðθPÞ� is the steering matrix, sðtÞ ¼
½s1ðtÞ;…; sPðtÞ�T is the source signal vector, N is the number
of available snapshots and the steering vector due to the
pth source can be expressed as

aðθpÞ ¼ ½1; ej2π sin θpd=λ;…; ej2πðM−1Þ sin θpd=λ�T ð2Þ
where ð�ÞT is the transpose, λ is the carrier wavelength and
d¼ λ=2 is the interelement spacing. It is assumed that the
noise nðtÞ is a white Gaussian process with mean zero and
covariance s2nIM , where IM is the M�M identity matrix.
Moreover, the noise is uncorrelated with the signal sðtÞ.
The covariance matrix of xðtÞ is
R¼ E½xðtÞxðtÞH� ¼ARsA

H þ s2nIM ð3Þ
where Rs ¼ E½sðtÞsðtÞH�, E½�� stands for the mathematical
expectation and ð�ÞH represents the conjugate transpose.

3. ESPRIT algorithm based on Nyström method

3.1. Signal subspace estimation

To exploit the Nyström method for DOA estimation, we
decompose the sample data matrix X¼ ½x1;…; xN� as

X¼
X1

X2

" #
ð4Þ

where X1∈CK�N and X2∈CðM−KÞ�N are the data sub-
matrices received by the first K sensors and the remaining
ðM−KÞ sensors, respectively. Here, K is a user-defined
parameter satisfying K∈f1;…;Mg. Let
R11≜E½X1X

H
1 � ¼A1RsA

H
1 þ s2nIK ð5Þ

R21≜E½X2X
H
1 � ¼A2RsA

H
1 ð6Þ

where A1 ¼Að1 : K ; : Þ represents the first K row vectors of
A and A2 ¼AðK þ 1 : M; : Þ represents the remaining ðM−KÞ
row vectors of A. In order to proceed, we must insure that
R11 is of full-rank. Therefore, K should not be less than P
but not larger than minðM;NÞ, i.e., fKjP≤K≤minðM;NÞg. In
general, when M becomes large, K is not needed to
increase substantially with M. For example, when M
increases from 15 to 30, we choose a relatively small K,
such as K¼12, is enough to ensure accurate DOA estima-
tion and reduce the computational complexity at the
same time.

Let U11Λ11U
H
11 be the EVD of R11, where U11∈CK�K is

the eigenvector matrix and Λ11∈CK�K is the corresponding
diagonal matrix with eigenvalues in descending order.
Setting U21≜R21U11Λ−1

11 , we form a new matrix as

U
˘
≜

U11

U21

" #
ð7Þ

We would like to form the signal subspace without the
computation of SCM and its EVD. With the results in [8],
we have the following proposition.

Proposition 1. Let G¼U
˘
Λ1=2
11 and UGΛGU

H
G be the EVD of

GHG, where ΛG ¼ diag½λG1;…; λGK � is the eigenvalue matrix
with λG1≥⋯≥λGK and UG ¼ ½uG1;…;uGK � is the corresponding
eigenvector matrix with uGi ði¼ 1;…;KÞ being the ith eigen-
vector. Then the signal subspace is formed by the first P
column vectors of Π, i.e.,

spanf ~Usg ¼ spanfAg ð8Þ
where ~Us≜Πð :;1 : PÞ and Π¼GUG.

Proof. The proof is provided in Appendix A.

3.2. DOA estimation

Having attained the signal subspace ~Us, we employ the
ESPRIT method for DOA estimation. To this end, we
decompose the ULA into two subarrays as illustrated in
Fig. 1. Let J1 ¼ ½Im;0m�ðM−mÞ� and J2 ¼ ½0m�ðM−mÞ; Im� be the
selection matrices for the two subarrays, where 0m�ðM−mÞ
represents the m� ðM−mÞ zero matrix and m is the size of
subarrays. The displacement between these subarrays are
assumed to be Δ¼ ðM−mÞd. Then the two identical sub-
arrays in the ULA are described as

JA¼
As1

As1Φ

" #
ð9Þ

where

J¼
J1
J2

" #
ð10Þ

Φ¼ diag½ej2π sin θ1jΔj=λ;…; ej2π sin θP jΔj=λ�: ð11Þ
and As1 ¼ J1A is the array manifold of the first subarray.

Since ~Us spans the same range space of A, there exists a
nonsingular matrix T∈CP�P such that

J ~Us ¼ JAT: ð12Þ
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Eq. (12) can be rewritten as

J1 ~Us

J2 ~Us

" #
¼

Us1

Us2

" #
¼

As1T
As1ΦT

" #
ð13Þ

where Us1 ¼ J1 ~Us and Us2 ¼ J2 ~Us. From (13), we easily
obtain

spanðUs1Þ ¼ spanðUs2Þ ¼ spanðAs1Þ: ð14Þ

That is, Us1 and Us2 span the same subspace. It follows
from (13) that

Us2 ¼Us1T
−1ΦT¼Us1Ψ ð15Þ

where Ψ¼ T−1ΦT. Notice that Φ and Ψ are related by a
similarity transformation, and thus have the same eigen-
values. Solving (15) in least-squares sense yields

Ψ¼U†
s1Us2 ð16Þ

where ð�Þ† represents the pseudo-inverse. Performing
eigendecomposition to Ψ results in

Ψ¼ ∑
P

i ¼ 1
ψ ieie

H
i ð17Þ

where ψ i and ei are the eigenvalues and eigenvectors of Ψ,
respectively. As Ψ and Φ share the same eigenvalues, it
follows from (11) that the DOA parameters are estimated
as

θ̂ i ¼ sin −1 λ � ∠ðψ iÞ
2πjΔj

� �
; i¼ 1;…; P ð18Þ

where ∠ðψ iÞ represents the phase angle of the complex
number ψ i. The proposed method for DOA estimation is
summarized in Table 1.
3.3. Performance analysis

The asymptotic performance of the ESPRIT has been
widely studied in the literature, e.g., Rao and Hari [11] and
Li et al. [12,13]. It should be noted that the proposed
ESPRIT method is based on the Nyström-based covariance
estimator (NCE) [5] and the NCE covariance matrix given
in (B.3) has different statistical properties from the SCM.
Consequently, the performance of the proposed ESPRIT
algorithm differs from that of its counterpart.
Table 1
Proposed algorithm.

Step 1 Decompose X into two sub-matrices X1 and X2 as (4). Then calcula

and R̂21 ¼ ð1=NÞX2X
H
1 .

Step 2
Perform the EVD of R̂11 and set Û21≜R̂21Û11Λ̂

−1
11 ,

^
U
˘
≜½ÛT

11 Û
T
21�T.

Step 3
Construct the matrix Ĝ ¼

^
U
˘
Λ̂11 and perform the EVD of Ĝ

H
Ĝ , i.e., Ĝ

first P column vectors of Π̂ , that is, ~̂U s ¼ Π̂ð:;1 : PÞ.
Step 4 Define two selected matrices J1 ¼ ½Im ;0m�ðM−mÞ� and J2 ¼ ½0m�ðM−mÞ; I

Ûs1 ¼ J1 ~̂Us and Ûs2 ¼ J2 ~̂Us , respectively. Utilize least squares to ob
Step 5

The DOA parameters are estimated as θ̂ i ¼ sin −1 λ � ∠ðψ̂ iÞ
2πjΔj

� �
.

Proposition 2. The asymptotic variance of the proposed
version of the ESPRIT method is given as

VarðδθiÞ ¼
ν2i
2

Varðδψ˘ iÞ; ð19Þ

where

νi ¼
λ

2πΔ cos θi

Varðδψ iÞ ¼Wi ∑
P

j ¼ 1
jxijj2

λj
N
∑
K

k ¼ 1
k≠j

λk
ðλj−λkÞ2

ukuH
k

0
@

1
AWH

i

Wi ¼ qiU
†
s1ðJ1−ψn

i J2Þ: ð20Þ

Proof. The proof is provided in Appendix B.

3.4. Computational complexity

The proposed ESPRIT method does not require the
formation of the whole SCM. Instead, it only needs to
compute R11 and R12 which require OðNK2Þ and
OðMNK−NK2Þ flops, respectively. Here, flops stands for
complex-valued floating point operations. Meanwhile, we
use the Nyström-based approach that just needs OðMK2Þ
flops to construct the signal subspace. Therefore, the
proposed method requires OðMNK þMK2Þ flops. However,
the classical ESPRIT algorithm needs OðM2N þM3Þ flops,
which is much larger than OðMNK þMK2Þ flops provided
that K≪minðM;NÞ.
4. Simulation results

We compare the proposed ESPRIT method with the
classical ESPRIT and unitary ESPRIT methods in terms of
root mean square error (RMSE). Meanwhile, the theoretical
MSEs of the proposed and classical ESPRIT algorithms are
plotted as well. In this simulation, two narrowband Gaus-
sian signals with zero-mean and variance s2 are assumed
to impinge upon a ULA from directions θ1 ¼ 1○ and θ2 ¼ 8○.
The noise is the zero-mean white Gaussian process. The
signal-to-noise ratio (SNR) is defined as the ratio of the
power of the source signals to that of the additive noise.
The displacement between two subarrays is assumed to be
d¼ λ=2. Monte Carlo simulation is carried out to evaluate
the RMSE and all the numerical results are averaged from
te the estimates of R11 and R21 from N snapshots, i.e., R̂11 ¼ ð1=NÞX1X
H
1

H
Ĝ ¼ ÛGΛ̂GÛ

H
G . Let Π̂ ¼ ĜÛG , then the signal subspace is formed by the

m�. The signal subspace formed by the two subarrays can be expressed as

tain Ψ̂ ¼ Û
†

s1Ûs2. Perform the EVD of Ψ̂ to obtain Ψ̂ ¼∑P
i ¼ 1ψ̂ iê iê

H
i .
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1000 independent runs. The RMSE is defined as

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

1
P

∑
P

i ¼ 1
ðθ̂ i−θiÞ2

( )vuut : ð21Þ

The RMSEs are depicted in Figs. 2 and 3 as a function of
SNR for different parameter settings. It can be seen that in
the high SNR regime, the proposed ESPRIT algorithm
provides similar performance as the classical and unitary
ESPRIT methods no matter how small or large the K is. This
in turn implies that the proposed ESPRIT method is not
very sensitive to the selection of K provided that K≥P.
Therefore, when M and N are fixed, we can choose a
relatively small K in large SNR scenario to save the
computational cost. Figs. 2 and 3 also imply that a
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Fig. 2. RMSE angle error performance in small-scale array case (M ¼ 15,
m ¼ 14, N ¼ 100, K ¼ [10; 12]).
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Fig. 3. RMSE angle error performance in large-scale array case (M¼30,
m¼29, N¼100, K¼[10; 12]).
relatively larger K can only lead to a bit better performance
for the proposed method. Meanwhile, it is indicated in the
figures that as M becomes larger, K should be increased
accordingly.

We now study the RMSE as a function of the sample
size. It is observed from Figs. 4 and 5 that, when N≤40, the
proposed ESPRIT scheme achieves the performance that is
almost the same as the classical and unitary ESPRIT
methods. When N440 and K¼10, however, the former
is somewhat inferior to the conventional approach. As K
becomes larger, say, K¼12, the proposed ESPRIT method
provides comparable performance with the other two
ESPRIT algorithms.

The computational times of the three ESPRIT algo-
rithms versus M with K ¼ 5;10;15 are plotted in Fig. 6. It
provides the average CPU time required to compute each
ESPRIT algorithm on a personal computer with an Intel i3-
2120 3.3 GHz processor. We observe that the proposed
ESPRIT algorithm is much computationally simpler than
the other two ESPRIT algorithms, particularly when M
becomes larger.
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Fig. 4. RMSE angle error performance versus N (M¼15,m¼14, K¼ [10; 12],
SNR¼5 dB).
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Fig. 5. RMSE angle error performance versus N (M¼30, m¼29, K¼ [10;
12], SNR¼5 dB).
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5. Conclusion

A low-complexity ESPRIT algorithm has been devised
for DOA estimation. In contrast to the existing ESPRIT
methods which require OðM2N þM3Þ flops, the proposed
scheme only needs OðMNK þMK2Þ flops, thereby being
more computationally efficient, especially for the case of a
large array. We also derive the theoretical expression for
the asymptotic variances of the DOA estimates. Numerical
results demonstrate that our proposal can provide com-
parable performance with the classical and unitary ESPRIT
methods.

Appendix A. Proof of Proposition 1

Let Us be the true signal subspace and there exists a
full-rank matrix T such that Us ¼ AT. Note that Π can be
rewritten as

Π¼GUG

¼
U11

R21U11Λ−1
11

" #
ðΛ11U

H
11Þ � ðΛ11U

H
11Þ−1Λ1=2

11 UG

¼ U11Λ11U
H
11

R21

" #
U11Λ

−1=2
11 UG

¼
R11

R21

" #
Q ðA:1Þ

where Q ¼U11Λ
−1=2
11 UG∈CK�K is a full-rank matrix because

U11, Λ11 and UG are the full-rank matrices. According to (5)
and (6), we obtain

R11

R21

" #
¼

A1RsA
H
1

A2RsA
H
1

" #
þ

s2nIK
0ðM−KÞ�K

" #

¼ ARsA
H
1 þ AA†

s2nIK
0ðM−KÞ�K

" #

¼ A RsA
H
1 þ ðAHAÞ−1AH s2nIK

0ðM−KÞ�K

" ! #

¼ AðRs þ s2nðAHAÞ−1ÞAH
1 : ðA:2Þ
Substituting (A.2) into (A.1) yields

Π¼AðRs þ s2nðAHAÞ−1ÞAH
1Q

¼ ABAH
1Q ðA:3Þ

where B¼ Rs þ s2nðAHAÞ−1∈CP�P .
Note that

Rx ¼UsΛsUH
s þ s2nUnUH

n

¼ ARsA
H þ s2nIM : ðA:4Þ

Post-multiplying (A.4) with Us yields

ARsA
HUs ¼UsðΛs−s2nIMÞ: ðA:5Þ

Since UsUH
s ¼AAHA−1AH, it follows from (A.5) that

Rs ¼ A†UsðΛs−s2nIMÞUH
s ðA†ÞH

¼ A†UsΛsUH
s ðA†ÞH−s2nA†UsUH

s ðA†ÞH

¼ A†UsΛsUH
s ðA†ÞH−s2nðAHAÞ−1: ðA:6Þ

As a result, recalling that B¼ Rs þ s2nðAHAÞ−1, we get

B¼ A†UsΛsUH
s ðA†ÞH: ðA:7Þ

Substituting Us ¼ AT into (A.7), we obtain

B¼ TΛsTH: ðA:8Þ
Since T and Λs are full-rank matrices with rank P, we have
rankðBÞ ¼ P. That is, B is also a full-rank matrix.

Let H¼ BAH
1Q , then Π¼AH. Due to the Vandermonde

structure of AH
1∈C

P�K , the first P column vectors in H are
linearly independent. Hence, there must exist a full-rank
matrix ~T such that

~Us ¼Πð :;1 : PÞ ¼ A ~T ðA:9Þ
where ~T ¼Hð :;1 : PÞ. This completes the proof of
Proposition 1.

Appendix B. Proof of Proposition 2

Let ~Π ¼ΠΛ−1=2
G . Then, it is easy to verify that

~ΠH ~Π ¼Λ−1=2
G UH

GG
H � GUGΛ

−1=2
G

¼Λ−1=2
G UH

G � UGΛGU
H
G � UGΛ

−1=2
G

¼ IK : ðB:1Þ
Therefore, the column vectors in ~Π are mutually
orthogonal.

Let ~Π be the eigenvector matrix and ΛG be the corre-
sponding eigenvalue matrix. Then the EVD formed by ΛG

and ~Π can be expressed as

~ΠΛG ~ΠH ¼ GUGΛ
−1=2
G � ΛG � Λ−1=2

G UH
GG

H ¼GGH

¼
U11

R21U11Λ−1
11

" #
Λ1=2
11 � Λ1=2

11 ½UH
11 Λ−1

11U
H
11R

H
21�

¼
R11 RH

21

R21 R21R
−1
11R

H
21

" #
: ðB:2Þ

Setting R12≜EfX1X
H
2 g ¼ RH

21, (B.2) can also be written as

RNCE ¼
R11 R12

R21 R21R
−1
11R12

" #
: ðB:3Þ

Here, RNCE is the covariance matrix obtained by the
Nyström-based covariance estimator [5] which is a fast
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low-rank approximation of a large positive semi-definite
matrix and can provide comparable performance with
the SCM.

The EVD of the NCE covariance matrix is given as

RNCE ¼ ∑
M

i ¼ 1
λiuiuH

i ðB:4Þ

where λ1≥⋯≥λP≥λPþ1 ¼⋯¼ λK ¼ s2n are the nonzero eigen-
values and ui; i¼ 1;…;K , are the corresponding eigenvec-
tors. Since rankðRNCEÞ ¼ rankðR11Þ ¼ K , we have λKþ1 ¼⋯
¼ λM ¼ 0.

As the quantity of interest is θi, we need to find the
relationship between the error in θi and the error in ψ i.
Noticing that ψ i ¼ ej2π sin θiΔ=λ and performing first-order
Taylor series expansion [13], we have

δθi≈
λ

2πΔ cos θi
Re

δψ i

jψ i

� �

¼ νi Imfδψ˘ ig ðB:5Þ
where Ref�g and Imf�g stands for the real and imaginary
parts respectively,

δψ
˘
i ¼

δψ i

ψ i
and νi ¼

λ

2πΔ cos θi
: ðB:6Þ

The error-variance of the estimated DOA is

VarðδθiÞ ¼ ν2i VarðImfδψ˘ igÞ ¼
ν2i
2

Varðδψ˘ iÞ: ðB:7Þ

The next step is to find the variance of δψ
˘
i. In Section 3,

we compute the matrix Ψ as

Ψ¼U†
s1Us2: ðB:8Þ

Let qi be the corresponding left eigenvector. It follows from
(17) that

Ψei ¼ ψ iei ðB:9Þ

qiΨ¼ ψ iqi: ðB:10Þ
Note that, qi and ei satisfy qiei ¼ 1 [15]. According to (B.(9)
and B.10), we obtain

ψ i ¼ qiΨei: ðB:11Þ
In most of the practical applications, there are lots of
factors, such as the noise and finite data, resulting in an
error δΨ in the estimation of Ψ. Therefore, the error δψ i in
the estimated eigenvalue ψ̂ i is inevitable. Employing first-
order approximation, δψ i can be written as

δψ i≈qiδΨei: ðB:12Þ
It follows from Us1Ψ¼Us2 that

ðUs1 þ δUs1ÞðΨþ δΨÞ ¼Us2 þ δUs2 ðB:13Þ
Canceling Us1Ψ and Us2 and then neglecting the second-
order term δUs1δΨ yield

Us1δΨ≈δUs2−δUs1Ψ ðB:14Þ
and

δΨ≈U†
s1δUs2−U

†
s1δUs1Ψ: ðB:15Þ

Since jψ ij ¼ 1, substituting (B.15) into (B.12) we have

δψ i≈qiU
†
s1ðδUs2−δUs1ΨÞei
¼ qiU
†
s1ðδUs2ei−ψ iδUs1eiÞ

¼−ψ iqiU
†
s1ðJ1−ψn

i J2ÞδUsei ðB:16Þ

where

δUs ¼ Ûs−Us: ðB:17Þ
Premultiplying 1=ψ i on (B.16) yields

δψ
˘
i ¼ −qiU

†
s1ðJ1−ψn

i J2ÞδUsei: ðB:18Þ
It follows from (B.18) that the variance of δψ

˘
i is

Varðδψ˘ iÞ ¼ qiU
†
s1ðJ1−ψn

i J2Þ � VarðδUseiÞ � ðJ1−ψn

i J2ÞHðqiU
†
s1ÞH

¼Wi ∑
P

j ¼ 1
jxijj2VarðδujÞ

 !
WH

i ðB:19Þ

where Wi ¼ qiU
†
s1ðJ1−ψn

i J2Þ.
It is shown in [14] that the errors between the eigen-

vectors of a Hermitian matrix have the following proper-
ties:

VarðδujÞ ¼
λj
N
∑
M

k ¼ 1
k≠j

λk
ðλj−λkÞ2

ukuH
k ; j¼ 1;…;M ðB:20Þ

where δui≜ûi−ui is the eigenvector error of ui. In the NCE
covariance matrix, since λKþ1 ¼⋯¼ λM ¼ 0, (B.20) is
reduced to be

VarðδujÞ ¼
λj
N
∑
K

k ¼ 1
k≠j

λk
ðλj−λkÞ2

ukuH
k ; j¼ 1;…;K ðB:21Þ

Therefore, substituting (B.21) into (B.19) yields

Varðδψ˘ iÞ ¼Wi ∑
P

j ¼ 1
xijj2

λj
N
∑
K

k ¼ 1
k≠j

λk
ðλj−λkÞ2

ukuH
k

������
1
AWH

i :

0
@ ðB:22Þ

Substituting (B.22) into (B.7) completes the derivation of
the MSE for the proposed method.
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